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An inverse problem approach for closure modelling

by Viviane Desgrange

Most of the real-world physical phenomena can be described by mathematical models governed

by partial differential equations (PDE). These differential equations might be too complex to be

solved analytically, therefore requiring advanced computational capabilities to be solved numeri-

cally. This defines the field of Scientific Computing. The main drawbacks lies in the fact that these

Full-Order Models (FOM) require large range of parameters, solved on high-dimensional grid and

using small time steps to performed accurate simulations able to capture the sharpest details, such

that the computational resources involved are a bottleneck on large-scale application. Multiples

methods of Model Order Reduction (MOR) were implemented to avoid these difficulties. Instead

of solving the FOM, these are Reduced order models (ROM), able to capture the main dynamics

while reducing the complexity of the system, which are numerically solved. These ROM usually

trade accuracy for time complexity and require a closure term to capture the information loss

which occurred when reducing the system. In the past decade, the progress in the field of machine

learning brings to light new techniques either to learn these closure terms or to learn new type of

ROM, such as the right-hand side of a PDE.

This thesis, beside reviewing the existing MOR methods, aims at assessing some of the machine

learning techniques which rise in the recent years applied to simple linear and non-linear PDEs

on coarse grid. It investigates how models should be adapted to the problem considered, how to

parameterize them to accurately approximate the FOM, with an emphasis on the inverse problem

aspect of the methods employed during training. It appears that pure neural network without

prior knowledge of the model are able to learn the high-level dynamical aspects of the FOM with

a similar if not higher accuracy than the baseline ROM models. The closure models which use a

neural network as a closure term achieve even higher accuracy. Additionally, continuous models

appear to slightly surpass discrete models. However, these results drastically drop when they must

learn model dynamics such as discontinuities or high frequencies.

Eventually, this thesis investigated usability of ML models when applied to the Proper Orthogo-

nal Decomposition (POD-ROM) methods which drastically reduce the system complexity to the

number of modes composing the reduced basis. The method is generalised from a single advection

shock example to a set of snapshots.

Hence, while this thesis only covers a small proportion of the ML models shows that the latest

advancement brought by deep learning methods to reduced order modeling achieve hopeful results,

not only for the learning of small closure term but also for the inference of complete reduced order

models.
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Chapter 1

Introduction

1.1 Background

1.1.1 Closure model and model order reduction

This section will provide a brief introduction to the closure modeling term and its relation with

Reduced Order Model (ROM) techniques. Most of the phenomena in physics, chemistry, biology,

etc. Can be described by mathematical models governed by partial differential equations (PDEs)

∂u

∂t
(t, x) = F

(
t, x, u,

∂u

∂xi
,

∂2u

∂xi∂xj
, ...

)
(1.1)

The main drawback of these differential equations lie in the equations being usually too complex,

involving a large range of parameters or a system of multiple PDEs, to be able to compute an exact

solution. However, it is possible to find an approximate solution to the underlying PDE system by

making usage of numerical models. Such models are named full-order model (FOM) and usually

of high dimensions. The main drawback of these models lie in the equations being usually too

complex, involving a large range of parameters or system of multiple PDEs, to be able to perform

a computationally efficient direct numerical simulation (DNS) at a large or industrial scale (i.e. an

adequate time and memory consumption). Consequently, reducing the computational complexity

of these mathematical models through model order reduction techniques appears as a requirement.

The reduced order models (ROM) aim at approximating the solution u(t, x) by u(t) while main-

taining the dynamics of the system. It can consist in reducing the number of ODEs in the system

by retaining a limited number of bases or solving the system on a coarse grid. A reduction will

trigger a loss of information, this means that the approximation u(t) is composed of an unclosed

and a closed term. The closed term corresponds to the dynamics of the system obtains from u(t),

while the unclosed term corresponds to the loss dynamics, discarded by the reduction method.

This brief definition show how one of the research area of reduced order model encompasses clo-

sure models which have been a fundamental discipline studied in physical phenomena modeling;

and, in the context of this thesis, the fluid dynamics phenomena.

1



Chapter 1 Introduction 2

As it will be further described in the subsequent sections; model order reduction methods were

subject of research for several decades, and can be classified nowadays in different categories in-

cluding proper orthogonal decomposition methods, reduced basis methods, balancing methods,

simplified physics and the nonlinear manifold methods. Additionally, the last two decades saw the

emergence of data-driven reduced order modeling techniques. While it won’t be possible to cover

the large range of methodologies which emerged from the decades of research, this thesis picked a

few relevant methods to describe and used as a basis to our inverse problem approach of closure

modeling.

1.1.2 Inverse problem approach and optimization problem

We defined the model order reduction methodology, its relation to closure modeling and a preview

of some of the known approaches.

However, this thesis does not only focus on the studies and development of a closure model applied

to a specific physic phenomenon but also on how to infer an approximated model Fθ of the PDE

representing the phenomena studied, from partial measurements (snapshots) of the solutions of the

PDEs, a problem which can be defined as a PDE-constrained optimization problem

min
θ

Eu0∼π0

∫ T

0
∥uθ(t)− u(t)∥2dt s.t.

∂uθ
∂t

= Fθ(t, uθ), u(0, x) = uθ(0, x) = u0(x) (1.2)

where u(t) is a known snapshot obtain numerically or through experimental measurements of the

time-dependent solution defined on a regular domain Ω ∈ Rn s.t. u : Ω × [0, T ] → Rn. Fθ,

parametrized by θ, is the operator used in the simplified model from which try to approximate

the full-order model ffom. uθ(t) = G(u0)(t) is the approximated solution obtained by solving the

differential equation ut = Fθ(t, u) constrained by initial boundary values and condition u0.

Questions that arise are how can we parameterize the operator Fθ?

A brief enumeration of the possible approaches to reconstruct the operator contains neural dif-

ferential equations (Neural ODE, Neural DDE, etc.), neural operators, physics-informed neural

networks (PINN), inference of non-linear dynamic properties [BPK16] or analytical reconstruc-

tion. A more detailed account of these approaches and the selected methodology will be explained

in the literature overview. Most of the methods listed enter in the category of the data-driven

approach which can be closely related to inverse problems such as studying the well-posedness of

the PDE-constrained optimization problem.

1.2 Research questions

Overall, the main goal of this thesis consists in studying data-driven methods to parameterize the

closure model operator Fθ with consideration to the PDE-constrained optimization problem 1.2.

The inverse problem aspects is evaluated with regards to the numerical methods used by these

data-driven approach.

The first objective aim at reviewing and bench-marking the recent ROM methods to improve our

understanding of the topic.
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The second objective consists in evaluating the efficiency of selected data-driven model reconstruc-

tion methods [LKA+20, Kid22, Cal20, GBC16], precisely the neural ordinary differential equations,

to simple linear and non-linear equations in comparison to their full-order model. The linear case

focusing on the ability to exactly retrieve the exact operator F , rather than strictly focusing on

the accuracy of the prediction, even if these topics are closely related. In the non-linear case,

this results in the ability to recover dynamics of non-linear term, which can corresponds to high-

frequencies, or discontinuities. In both cases, an other objective aim at looking at the efficiency of

interpolation and extrapolation of the obtained closure model, in other words, how accurate our

operator works when applied to unknown spacial data or prediction on time data. Such tasks will

cover experiments to evaluate the influence of regularization and choice of architecture on these

errors to improve the accuracy of the prediction.

The last objective aim at evaluating these same methods when applied to closure models such as

down-scaling and POD problems. These case do not focus on the ability to learn the dynamics

of the exact model when projected into a reduced space. This latest case is inspired by the work

from Gupta and Kochkov [GL21, KSA+21].

In brief, the thesis’ objectives are resumed through these questions, each of them affiliated to a

chapter:

1. How accurate is the operator Fθ retrieved through data-driven reconstruction methods?

• Which machine learning model should be considered to model the operator? Discrete

neural network, neural differential equation, physic-informed neural network, neural

operator...

• How should be design the neural network architecture?

• Is there a form of neural network applicable to all problems?

• Which training procedure should be adopted to parameterize the operator Fθ?

• How accurate are the predictions of the operators encompassing PDE right-hand side?

• And when used as a closure term as a complement to a baseline model?

2. How efficient are data-driven reconstruction methods to infer the dynamics properties of non-

linear PDE?

• Can a same architecture be used on every parameterization of a PDE (i.e. Viscous and

Inviscid Burgers equation)?

• Are they able to learn low-scale dynamics such as discontinuities (shock in Inviscid

Burgers) or high frequencies (Korteweg–De Vries)?

3. Can data-driven methods be used to improve or accelerate existing closure models?

• On a simple down-scaling problem?

• On a POD projection-based problem?
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1.3 Overview

This section provides a summary of the topics covered by each thesis chapter.

The chapter 2 is dedicated to the literature review of closure modeling techniques and the data-

driven reconstruction method brought in by the latest works. This chapter also covers the necessary

notions and background required to understand and have a constructive criticism of the deep learn-

ing methods which were selected and applied through the experiments of this thesis.

In the chapter 3, the first experiments are performed on a linear diffusion equation. They provide

insight on the inverse problem aspect of the data-driven reconstruction methods and give the first

answers to their efficiency for approximating the operator used for prediction tasks.

The chapter 4 introduce the non-linear Burgers equation on which the experiments from the subse-

quent chapters will be performed. More importantly, it covers the down-scaling and POD problems

whose baseline models will be used as a point of comparison to answer the remaining research ques-

tions listed above.

The chapter 5 directly extends the previous methodology-dedicated chapter. It investigates the

choice of architecture to parameterize the modeled operators, study the efficiency to retrieve dy-

namics from a non-linear model on a down-scaled problem context. From this knowledge, the

chapter then tries to evaluate the capacity of the data-driven approach to learn the loss informa-

tion when the FOM complexity is drastically reduced through a Galerkin projection onto a reduced

space.

Eventually, the chapter 6 resumes the discussions of the previous chapters and advises on the

different directions from which this thesis work could be extended.



Chapter 2

Literature review

2.1 Introduction

This chapter covers the notions required to understand the closure modeling problems aspects

tackled through this thesis. Firstly, it performs a review of the multiple reduced order modeling

methods of the past decades, prior to focusing on the recent data-driven modeling approach brought

in by the scientific literature. As the data-driven modeling approach is the principal subject of

this thesis, this chapter does not limit itself to the high-level description of the method, it also

elaborates further on the numerical aspect of this approach; thus, it provides some explanation the

family of neural networks studied, the automatic differentiation and sensitivity analysis methods

used to calibrate the neural network architectures and the optimization algorithms considered.

It also introduces some of the inverse problems encountered, a topic extended by the subsequent

chapter. We hope that the readers of this thesis whose background might only cover a sample of

the necessary mentions will, through this chapter, obtain a better understanding of the relation

between reduced order models, closure models, differential equations, deep learning approximation

methods and dynamical systems.

2.2 Closure model and reduced order model review

As briefly discussed in the introduction, the model order reduction methods have been the main

subject of research topics for decades as a mean of capturing the structure and dynamical behavior

of underlying flows while reducing the computational cost of the full-order models (FOM):

∂u

∂t
= fFOM(u), u ∈ RNx . (2.1)

Despite the computational cost saving they bring, reduced order models (ROM) remain a class

of low-fidelity models. It explains the large extent of works done to obtain ROMs which would

fit mimic as accurately as possible the direct numerical simulation (DNS). Consequently, since

their introduction, the range of ROM approaches expanded greatly, going from the first principle

Galerkin methods, through closure modeling and data-driven dynamical system identification, to

5
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the recent physics-informed data-driven models. The latter approach, data-driven modeling, only

arose in the past decades with the emergence of machine learning techniques, but already brings

great changes to this field. In this section, we give an overview of the methods listed above

and highlight some of the techniques we implemented or made usage of as part of the operator

reconstruction problems tackled in this thesis.

2.2.1 Reduced order representation

Let’s consider the application of model reduction techniques to problems such as parameterized

PDEs, differential equations depending on a set of parameters. Reduced order representations

(ROR) should be seen as the most simple ROMs. They usually take advantage of the visible

underlying and coherent structures of the problem to catch the main features of the model. They

can be represented as

u(t, x) =
r∑

k=1

ak(t)φk(x), (2.2)

where x corresponds to spatial dimension, t time, ak(t) are the time dependent coefficients, φk(x)

the orthonormal basis functions (obtained using Fouriers series, resolution of eigenvalue problems,

etc.), m the total number of basis functions and r ≪ m the number of basis retained. The simplest

example is the proper orthogonal decomposition (POD) [L.67], also known as principal component

analysis (PCA) or singular value decomposition (SVD). It aims at decomposing a arbitrary vector

field u(t, x) ∈ RNx representing the mathematical model evolution into a set of POD modes.

The first POD modes (ordered by eigenvalues) are known to capture most of the energy from the

original variable, in other words, the main dynamics of the system. See section 4 for further details.

Considering that the POD modes are usually obtained from a high-fidelity DNS (time snapshots

of the solution for the POD), it must be highlighted that the purpose of the ROR is to be able to

represent the dynamics of the PDE for different sets of parameters. For instance, in the case of a

linear problem [QMN15]

f(µ) = L(µ)u(µ) (2.3)

with the linear operator L : V → V ′, f : V → R a linear transformation of V , parametrized by

µ ∈ P which correspond to any possible entries: it can be a source term f , a diffusion coefficient

ν or initial conditions u0 in the convection–diffusion equation.

This thesis cannot honor the full extent of projection-based ROR approaches available nowadays

[SESO+21]. The POD-Galerkin projection (POD-GP), the empirical interpolation method (EIM)

[BMNP04] (a modification of POD which reduces the complexity of computing non-linear term

of the PDE), the discrete empirical interpolation method (DEIM) [CS10] (another variant able

to reduce the dimension of a set of ODEs), and spectral POD [SPO16] are only a handful of the

existing methods. Therefore, this thesis will restrain itself to implement the classical POD-GP,

with the purpose of evaluating the efficiency of recent data-driven methods to closure modeling

rather than the existing ROR approaches.

Now, we should highlight the main issues with the existing RORs approaches. The number of

modes truncated and the accuracy it gives are only usable in the context of an academic problem

(most publications are limited to a dozen of modes [MML+20]). They can hardly be used on

large-scale applications considering the accuracy desired. Additionally, we should highlight that
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the majority of publications focus on small rather than high Reynolds numbers (the ratio of inertial

to viscous forces within a fluid), making it less susceptible to turbulence. This causes the necessity

to work on models for different viscous forces.

2.2.2 Closure modeling

As previously described, the usage of ROMs can gives the possibility of computing solutions in-

dependent of the original FOM attributes. In the example of a convection-diffusion equation,

this signifies independence of the dimension n of the FOM, the diffusion coefficient ν, the initial

conditions, etc. However if we consider a projection-based ROM, we know that the wave mod-

els are usually described by a slow decaying Kolmogorov n-width (the rate of error arising from

projection on the best possible bases) [GU19]. Consequently, it might be necessary to maintain a

large number of modes in order to not lose too much information about the system, which circles

back to the computational resource consumption problem of FOM. This example leads to the next

main approach to ROM and one of the main aspects of the thesis: closure models. They consist

of determining the influence of unresolved components on the ROM dynamics obtained from the

resolved term. Let’s consider a ROM

∂v

∂t
= fROM(v) + ϵ(v) (2.4)

where v(t) is the solution to the ROM which try to approximate the solution u(t) ∈ RNx to the

FOM, fROM(v) described the ROM resolved dynamics and ϵ(v) is the closure term in charge of

providing the influence of the ROM unresolved dynamics (i.e. the discarded modes). We highlight

the idea that the closure term ϵ(v) applies to any type of model error; for instance it will model the

influence of the sub-grid scale dynamics only described on a fine grid, for methods such as finite

differences taking place on a coarse grid fcoarse(v).

∂v

∂t
= fcoarse(v) + ϵ(v), (2.5)

where v(t) ∈ RNd , Nd ≪ Nx, ϵ(v) = fdownscale(v)− fcoarse(v). In another instance where the ROM

uses a reduced number of POD basis ϕr, the closure term models the influence of the discarded

basis functions ϕd:

∂v

∂t
= fPOD(v) + ϵ(v) = ϕ⊺

rfFOM(ϕrv) + ϵ(v), (2.6)

where v(t) = ϕ⊺
ru(t), ϕr ∈ X r = span{ϕ1...ϕNr} ∈ RNr×Nx and Nr ≪ Ns is the number of basis

functions.

Having discussed the definition and a few instances of closure models, it is important to address

the fact that multiple approaches exist to model the closure term (an aspect discussed in the

subsequent section).

1. Structural closure modeling focuses on the analytical aspects;

2. Stochastic closure modeling try to avoid the deterministic aspects previous methods have;
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3. Data-driven closure modeling takes advantage of data-sets obtained by solving the FOM to

improve the ROM.

2.3 Data-driven modeling

DNS is computationally expensive and ROM drops accuracy in the resolution of the governing

equations for large scale modeling problems. Implicit and explicit methods used by numerical

solvers require fine-grid discretization and solving a high-dimensional equation to be able to provide

accurate results, making it a challenge to simulate physical phenomena such as fluid flows on a large

scale. However, the latest data-driven modeling approaches to ROM brought by the state-of-the-

art methods in the machine learning field offer a new range of methods to tackle these problems.

Such methods make use of data to learn how to predict the solutions to the modeling problems

rather than to solve them directly, and have demonstrated great improvements in computational

efficiency.

Used both for operator inference and closure modeling, some of the latest works focus on retrieving

the unknown dynamics of the system [BPK16]. Others showed the efficiency of using deep learn-

ing to determine the closure term required to represent the sub-grid-scale effects on coarse grid

models [PMK+20] or the influence of discarded modes [MML+20, MLB21, GL21] in fluid dynamics

reduced models. Fully data-driven methods have been used to determine PDE solvers for similar

applications [KSA+21]. Other domains come into the equation given that these methods were also

considered with an emphasis on speed rather than accuracy (beyond the capacities of standard

closure modeling techniques) as a way to perform fast simulations [KAT+19].

Logically, the drawback of such approaches is based on the methodology to obtain training data of

high quality. Data of poor quality leads to bad predictions in addition to having to use expensive

numerical solvers to generate then. The generalization problem also arises from the deep learning

method used, as it is not clear whether the trained neural networks can extrapolate for other

parameters. Additionally, a distinction must be done between regular neural networks, neural

differential equations (NODE, NDDE, etc.) [Kid22], physic-informed neural networks (PINNs),

neural operator, etc. As such, this section tries to provide to the reader the necessary notions to

some of the data-driven methods used in this thesis. This thesis will put emphasis on the methods

applied to the retrieval of unknown dynamics. A fast review of the techniques is provided here,

postponing the details of the actual implemented procedures to the next section.

Operator inference Operator inference can be defined as the deduction of ROM operators

from data. The initial definition referred to using machine learning techniques as a non-intrusive

method to determine the linear and non-linear operators [PW16] [YGBK21] composing a ROM

(for instance in the set of equations obtains from POD-GP 4.30) instead of having to explicitly

compute them. Logically, this approach can be generalized to learn continuous direct models or

closure terms; and subsequently on the choice of numerical methods. Convolutional and residual

neural networks [KSA+21] were used to successfully model two-dimensional turbulent flows based

on the Navier-Stokes equations. The experiments resulted in a solution as accurate as finite-

difference and finite-volume based DNS with a 10× finer resolution and a 40− 80× computational
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speed-up. Similarly, [MBO21] used a deep convolutional auto-encoder (CAE) to learn the ROR

and a long-short term memory (LSTM) to learn the time evolution of an advection problem.

Pure feedforward neural networks [HD20] and recurrent neural networks [WRH19] were also used

in this intention and generated encouraging results. Neural networks were also used to tackle

problems related to non-intrusive non-linear reduced order modeling (NIMOR), which usually

requires an intrusive approach. The main idea consists of learning the dynamics of the system in a

reduced space rather than from the high-dimensional FOM. Lee [LC20] uses a CAE to compute an

approximation of the non-linear manifold reduced order model applied to advection problems such

as the one dimensional Burgers equation. Kneifl [KGF21] applies a similar idea, using a neural

networks to learn the reduced basis obtained from the POD-Galerkin projection.

Neural Operator Finally, one of the latest approaches is known as neural operators (NO). While

the previous methods focus on learning mappings between finite-dimensional spaces, neural oper-

ators try to learn mappings between continuous spaces, which can be seen as infinite-dimensional

operators. The main advantage of the neural operator is its resolution invariance. The neural

operator need to be trained once and can be applied to any grid resolution, while the usual neural

network (finite-dimensional operator) will only be able to determine the solution to a PDE on a

finite dimensional space of same size as it was trained on [LKA+20].

Physics-informed neural network Scientific machine learning approach to PDEs requires the

acquisition of trust-worthy data of the evaluated equations, but also the knowledge of its underlying

physic. While the neural networks are used for the capacity to learn non-linearity of the evaluated

models, the presence of the non-linear terms in these equations remains a challenge and they

require deeper neural network architecture as the complexity of the PDEs increase. From there,

raise the necessity of physics-informed neural networks (PINN) [RPK19] which directly model the

solution u by integrating some knowledge of the PDE such as conservation laws (Mass-energy,

momentum, etc.), terms of the PDE itself, initial conditions. Let’s consider the solution u to the

Bateman-Burgers equation:

ut = uux − νuxx (2.7)

The PINN f(t, x; θ) is obtained by replacing the variable u(t, x) with a neural network NN(t, x; θ)

and using the automatic differentiation (AD) 2.4.3 method to enforce the PDE form:

f(t, x; θ) =
∂

∂t
NN(t, x; θ)−NN(t, x; θ)

∂

∂x
NN(t, x; θ) + ν

∂2

∂x2
NN(t, x; θ) (2.8)

When training the PINN, the optimisation problem is defined by the minimisation of a loss function

composed the difference between u(t, x) and NN(t, x; θ), and the constrained of the PDE system.

Neural differential equations More recently, a new class of data-driven methods have emerged

in the scientific computing field. Neural differential equations [CRBD18] [Kid22] (known in their

simplest form as Neural ODEs) consist of using a differentiable equation solver as a central element

of the computational graph used to train the neural network.

This section has attempted to provide a brief summary of the closure modeling with an emphasis

on the data-driven modeling approaches to ROM. With regards to the latest approach, early
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experiments reviewed different form of neural network, but the work performed in this thesis

eventually focused on the Neural ODEs.

2.4 Notions on Neural Ordinary Differential Equations

As a first approach, we consider the neural ordinary differential equations (NODE) to parameterize

the closure model operator Fθ with consideration to the PDE-constrained optimization problem.

A recent addition to the list of neural network architectures. Neural ODE can be defined as a

differential equation using a neural network to parameterize the operator Fθ [CRBD18]:

du

dt
= Fθ(u), u(0) = u0, (2.9)

where Fθ : R×Rd1...dn → Rd1...dn is the approximated operator parameterized by θ and u : [0, T ]→
Rd1...dn the solution. This operator covers the case of the PDE being approximated by a pure

neural network architecture, and the case where neural network is used as a closure term ϵ(u).

In the case where a NODE would be use to learn a closure term, it can be affiliated with a residual

neural network (ResNet). In general, NODEs can be considered as a continuous counterpart

to discrete models such as recurrent neural networks (RNN), long short-term memory (LSTM)

or gated recurrent unit (GRU). The definition of the neural network architecture is carried out

analysing the terms of the model. Common choices are feed-forward (FNN) or convolutional

neural networks (CNN). One of the advantages of the latest instance is to approximate methods

such as finite differences. Similarly, if we were interested in including a latent term, neural delay

differential equations (NDDE) could be considered.

Learning a NODE in the initial value problem (IVP) case consists of using a numerical ODE solver

as part of the learning process:

u(t1) = u(t0) +

∫ t1

t0

Fθ(t, u(t)) dt (2.10)

The initial value u0 = u(t0) is provided together with the parameterized operator Fθ to the nu-

merical solver. The algorithm will learn Fθ when minimizing an objective function L. While the

idea is simple, we will discuss the multiple issues encountered and solutions can be derived from it

in the following section.

2.4.1 Well-posedness in the sense of Hadamard

In the following section we discuss the inverse problem aspect of the NODE through a study of its

well-posedness. We modify the notation in Equation (2.9) and use the general form

f = K(u), (2.11)

where K : U → F the forward operator mapping the function u ∈ U to the function f ∈ V is the

exact model operator we are trying to determine through Fθ. As we want to check if the problem

2.9 fulfill the requirements of a well-posed problem in the sense of Hadamard :
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1. Existence: there exists a solution u s.t. K(u) = f

2. Uniqueness: the solution u is unique

3. Stability: the solution’s depends continuously on the data.

In the IVP context, existence and uniqueness of the problem 2.9 is insured by the Picard-Lindelöf

theorem, as long as its right-hand side is Lipschitz continuous.

Definition 2.1 (Lipschitz continuous). A function f : U → V is Lipschitz continuous if ∃C ≥ 0

s.t. ∀(u1, u2) ∈ U2, ||f(u1)− f(u2)|| ≤ C||u1 − u2||.

Theorem 2.2 (Picard-Lindelöf theorem). If a function f : R × Rd → Rd is continuous in t

and Lipschitz continuous in u, with u0 ∈ Rd; then there exists a unique differentiable solution

u : R→ Rd to the differential equation du
dt = f(t, u), u(0) = u0.

From this demonstration we have a proof of the existence and uniqueness to the equation 2.9.

Therefore, we can make usage of NODEs as a data-driven operator approximation method for

problem such as PDEs.

2.4.2 Sensitivity Analysis

Forward pass Finding analytical solutions is not usually possible for non-linear differential equa-

tions such as Navier-Stokes equations. The usage of numerical solvers is necessary to generate

data-sets for our models to train the NODEs parameterized by θ. For non-stiff equations (e.g.

advection-diffusion equations), the main subject of study of this thesis, Runge-Kutta methods pro-

vide a set of implicit and explicit methods to solve our ODE. For the generation of the training,

validation and test data, we use the Tsitouras 5/4 Runge-Kutta method (Tsit5) [Tsi11] and the

classical 4th-order Runge-Kutta (RK4). Now, in the context of a neural ODE with complex ar-

chitecture, we should consider other methods due to the numerical instability when solving stiff

equations. RK4 or Tsit5 should still work on short term predictions, but the accumulated error

will affect extrapolated predictions. Traditionally, implicit methods such as the Rosenbrock family

of single-step methods are used. However, they are computationally expensive, requiring short

time steps to guarantee numerical stability and accuracy; from it two issues arise in the training of

the neural network. First, most implicit methods compute the Jacobian of the PDEs system once

per iteration (e.g. using Newton’s method), a task which is computationally expensive for neural

networks. Second, the high number of time steps will trigger an evaluation of the neural network

as well. Overall, during forward propagation the numerical solvers can be used to train the NODE

to solve the IVP, each intermediate operation of the solvers is known.

Backward pass The main difficulty lies into the backward pass, considering that we need to

be able to back-propagate through the ODE in order to obtain the gradients with respect to the

parameters θ, as we need to be able to compute ∂L
∂θ to minimise the cost function. For instance,

back-propagating through all the intermediate operations known of the forward pass has a memory

cost which should be considered, on top of introducing numerical errors.

Multiple approaches are available for the back-propagation step. Discretize-Optimize (DO) This

straightforward approach is the main method used to train the neural network. As a result of the
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numerical solver performing continuous and differentiable operations, it is possible perform the

back-propagation step through all the operations of the forward propagation. Discretize-optimize

got this name by the idea that the optimization step (differentiation) is performed after the ODE

is discretized in time (using an ODE solver). Such an approach is accurate and fast as it does not

approximate the gradients, as the computational graph is fully known and automatic differentiation

(AD) can be used. However, it requires a sub-optimal memory usage since it is necessary to store

the intermediate operations of the numerical solver on top of introducing additional numerical

errors. Additionally, we notice that training a continuous model like NODE using the discretize-

optimize approach along with a the Forward Euler method, is equivalent to using the NODE as

the difference between each snapshots of a differential equation solutions, that is

u(t+∆t) = u(t) + ∆t (Fθ(t, u(t))) (2.12)

Optimize-Discretize (OD) is the next popular approach we consider in this work, also known as

continuous adjoint method. Instead of back-propagating through the numerical solver, gradients

are computed by solving an other ODE backward in time, also known as the adjoint sensitivity

method [Pon87].

2.4.2.1 Backsolve adjoint method

The backsolve adjoint method is the original proposition made by [CRBD18], solving an ODE

backward in time allow a memory complexity of O(1).

Algorithm 1: Backsolve adjoint method for computing derivatives of an ODE Problem

Require: θ, t0, t1, u(t1),
∂L

∂u(t1)

1: function f(u(t), a(t), t, θ) ▷ ODE System to solve
2: du

dt = Fθ(t, u(t))

3: ∂au
∂t (t) = −au(t)

⊺ ∂Fθ
∂u (t, u(t))

4:
∂aθ
∂θ (t) = −au(t)

⊺ ∂Fθ
∂θ (t, u(t))

5: end function
6: s0 = [u(t1),

∂L
∂u(t1)

, 0] ▷ Initial conditions

7: u(t0),
∂L

∂u(t0)
, ∂L

∂θ = SolveODE(F, s0, [t1, t0], θ) ▷ Backward pass

8: return ∂L
∂θ ,

∂L
∂u(t0)

▷ Computed gradients

Consider the loss function L. We try to minimize it with respect to the model parameters θ by

computing ∂L(u(T ))
∂θ . Let’s consider the solution to the ODE u(t) : [t0, t1]→ Rd:

u(t1) = u(t0) +

∫ t1

t0

Fθ(t, u(t)) dt, (2.13)

L(u(t1)) = ode solver(Fθ, u0, t0, t1), (2.14)

u(t0) = u0. (2.15)
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The adjoint method checks how the gradient of the loss function depends on the hidden states u(t).

The dynamics of the adjoint variable a(t) = ∂L
∂u(t)(t) are studied through its gradient:

∂au
∂t

(t) = −au(t)⊺
∂Fθ

∂u
(t, u(t)), au(t1) =

∂L
∂u(t1)

, (2.16)

∂aθ
∂θ

(t) = −au(t)⊺
∂Fθ

∂θ
(t, u(t)), aθ(t1) = 0. (2.17)

By calling the numerical solver, ∂L
∂u0

can be computed from a(t1), and the required values of u(t) can

easily be computed backward in time. Finally, ∂L(u(T ))
∂θ can be computed through a last integral:

∂L
∂θ

= −
∫ t0

t1

∂aθ
∂θ

(t) dt. (2.18)

Automatic differentiation can be used to compute a⊺u
∂Fθ(u)

∂u and a⊺u
∂Fθ(u)

∂θ , this increase the time

complexity in favor of an improved memory complexity and numerical error in comparison to the

DO approach.

Unfortunately, backward solutions to non-linear differential equations may not be stable. This is

enhanced in the case of stiff equations. This can be explained by the ill-posedness of multiple

ODEs when solved backward in time. We refer to the chapter 3.2, which analyse the ill-posedness

of an inverse problem applied to the linear diffusion equation ut = κuxx, to get a demonstration of

the unstability and difficulties brings by back-propagation.

Some implementations such as the Julia library DifferentialEquations.jl [RN17] introduce check-

points during back-propagation where the backward resolution of the ODE is reinitialized to avoid

these issues. The memory complexity is barely increased O(1+ncheckpoints), however this trade-off

leads to an accumulation of numerical errors in the gradient computation, requiring very small

time steps for stiff equations.

2.4.2.2 Interpolating adjoint method

Since the work from Chen [CRBD18], several improved methods have been introduced. Using a

similar idea, the interpolating adjoint method proposed by Rackauckas [RMM+20] slightly increases

memory complexity in favor of stability. It consists of solving the ODE in reverse using interpolation

(while the backsolve adjoint method does not). Snapshots (ui, ti) of the forward propagation

are used for check-pointing during the backward propagation such that the ODE is solved for

each interval t ∈ [ti−1, ti]. Given that, the backward propagation requires memory to hold the

interpolation between the two checkpoints, and the two associated forward solutions of the ODE.

The stability of this method make it preferable when training neural ODEs.

The OD methods introduced above will be used in the experiments of this work to learn closure

models. Other approaches exist (e.g. reversible solvers) however in this thesis we will not focus on

them.
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Algorithm 2: Interpolating adjoint method for computing derivatives of an ODE Problem

Require: θ, t0, t1, u(t1),
∂L

∂u(t1)

1: function f(u(t), a(t), t, θ) ▷ ODE System to solve
2: ∂au

∂t (t) = −au(t)
⊺ ∂Fθ

∂u (t, u(t))

3:
∂aθ
∂θ (t) = −au(t)

⊺ ∂Fθ
∂θ (t, u(t))

4: end function
5: s0 = [u(t1),

∂L
∂u(t1)

, 0] ▷ Initial conditions

6: u(t0),
∂L

∂u(t0)
, ∂L

∂θ = SolveODE(F, s0, [t1, t0], θ)

7: return ∂L
∂θ ,

∂L
∂u(t0)

▷ Computed gradients

2.4.3 Automatic Differentiation

In the previous section we mentioned automatic differentiation (AD), which, as its named indicates,

is a set of methods enabling us, from computing the numerical values of a function, to automatically

compute numerical values of the derivatives of this function with the same accuracy as if we specified

the derivative function itself by hand. Thus AD must not be confused with the computationally

expensive finite differences method (which is also subject to round-off errors), nor with symbolic

differentiation which aims at determining the analytical expression for the derivative of the function,

a method known for its limitations to small equations. This explains the recent development

and heavy usage of AD, considering the importance of derivatives in sensitivity analysis, inverse

problems and simulation. AD is based on two principle ideas:

1. A complicated function can be described as a sequence of elementary operations and function

applications (addition, multiplication, exp, cos, log, etc.) with known derivatives.

2. The derivatives of a composed function is equal to the composition of the derivative of the

composing functions, also known as the chain rule (CR).

Forward accumulation In existing libraries, we encounter two types of AD: forward and reverse

accumulation (differentiation), depending on the direction in which the chain rule is be applied

[BBBCD00]. Consider the equation y = f(u) and its Jacobian J = ∂y
∂u . Forward accumulation (FA)

consists of specifying the independent variable on which differentiation is performed and compute

the derivative of each sub-expression recursively, where the sub-expression are represented by the

independent variable v augmented by v̇ = ∂v
∂x . Following the chain rule from inside to outside, it

will define v̇i =
∑

j≺i
∂v
∂vj

v̇j .

Reverse accumulation Consider the equation y = f(u) and its Jacobian J = ∂y
∂u . Reverse

accumulation (RA) consists of specifying the dependent variable on which the differentiation is

performed, the derivative being determined with respect to the outer function, rather than the

inner function (as in FA). In this case, the variable v is considered through its adjoint v̄ = ∂y
∂v .

Following the chain rule from outside to inside, we define v̇j =
∑

j≻i v̄i
∂v
∂vj

.

The choice of automatic differentiation method depends on the size of the problem. Usually, RA is

preferred to FA on functions f : Rn → Rm where m < n and vice versa. In the specific case of deep
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learning, RA is preferred given that the training involves a gradient based minimization of a scalar

error value, a task for which RA is more efficient than FA. We will not be implementing AD directly,

however we use it through libraries in our experiments when performing NODE training (thus the

necessity of this highlight). In Julia, there is a wide range of AD packages. Among them we use

Zygote.jl which implements reverse accumulation using source-to-source code transformation for

Vector-Jacobian products (VJP).

2.4.4 Note on network architecture for Neural differential equations

Existing literature shows that complex architectures are not necessary to obtain encouraging results

with NODEs. A neural network trained to model the right-hand side of a PDE equation to be

solved will not require as many parameters than a neural network trained to directly predict the

snapshot u(t) from u 0. Gupta [GL21] and Malik [MML+20] used feed-forward neural networks

(FNN) (see Appendix B) in their attempt to learn a neural network closure term for the POD-GP

ROM applied to a case using Bateman-Burgers equation. The network was composed of 1-5 fully

connected hidden layers with continuous activation functions (hyperbolic tangent, identity). The

root mean square error based objective function decreased on both the training and validation

data sets. We can also consider the architectures previously used in pure neural network cases

[KSA+21, PMK+20, MBO21]. The general idea consists of taking the structure of the modeled

PDEs into consideration when choosing the architecture, e.g. by using convolutional layers (see

Appendix B) to mimic spatial derivatives of different orders, introducing additional channels to

emulate non-linear terms, inter alia.

2.4.5 Objective functions

Regardless of the designed architecture used, the neural network training will consist of minimising

the objective function C(θ), such that θ∗ = argmin C(θ) is the optimal model parameters for solving

the initial value problem (IVP) with C(θ) =
∑

i L(ui; θ) the aggregation of all data batches. If we

consider the cases of NODEs (2.9), there are two approaches for the initial choice of loss function

L, that is:

A-priori approach Also known as derivative fitting, compare the closure model Fθ directly to

the time derivative of the ODE reference solution duref
dt , rather than to the solution uref itself:

L(u, t; θ) =
∥∥∥∥Fθ(t, u(t))−

du

dt
(t)

∥∥∥∥2
2

. (2.19)

Derivative fitting is accommodating in the fact that, given parameters θ, evaluating the cost func-

tion and its gradient via the closure model for pre-computed reference snapshots uref(t) is fast,

as compared to computing the entire resulting trajectories uθ(t). Additionally, computing the

gradient of the loss function L with respect to the parameters θ, ∂L
∂θ , a required task for back

propagation, can be obtained using the chain rule.
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However, in the context of this thesis, reference data is obtained by solving known PDEs. It is

therefore an elementary task to compute the reference time derivatives up to a specific order of ac-

curacy (using finite differences, automatic or symbolic differentiation, etc.). This task might not be

possible on reference data obtained from physical measurements, nor on stiff equations. In practice

(e.g. section 4, it has also been observed than the a-priori approach leads to predictions diverging

from the reference solution. If an operator Fθ approximates the time derivative correctly (a-priori

correctness), the resulting solution trajectory might still not be correct (a-posteriori correctness).

A-posteriori approach Also known as trajectory fitting, this approach consists of using an

ODE solver to obtain the predicted ODE solution trajectory uθ for a given parameter vector θ and

compare it directly to the reference solution trajectory uref. The main drawbacks of this approach

reside in the computational resources involved in solving the ODE defined by Fθ and the difficulty

of computing ∂L
∂θ when performing back-propagation through the ODE solver. This gradient can

be computed using the optimise-discretise (OD) methods described in the section 2.4.2 such as

backsolve or interpolating adjoint methods.

L(u, t; θ) = ∥uθ(t)− u(t)∥22 (2.20)

It should be highlighted that several questions arise as we wonder which approach would suits the

best for accurate model reconstructions in IVP resolution. Depending on the problem modelled,

it might be preferable to use the derivative over trajectory fitting approach. With regards to

the drawback of these methods, a two-steps combination of these methods could be considered

using early stopping to avoid over-fitting in the derivative fitting case. Different variant of the loss

function L (other than L2-norm) could be considered.



Chapter 3

An inverse problem approach through

a linear diffusion equation

3.1 Introduction

This chapter offers an overview of the inverse problems encountered through this thesis. It focuses

on the one dimensional linear diffusion equation (aka. Heat equation) [Fou09], an example simple

enough to covers the problem of stability and ill-posedness which affect some of the methods used.

These will help us gain insight on the data-driven operator approximation method applied in the

subsequent chapters to the non-linear differential equations, such as the Bateman-Burgers [Bur48]

and Korteweg–De Vries [DJG95] equations.

3.2 Diffusion equation

We start our evaluation of the data-driven operator approximation methods by considering the

problem of stability with the one dimensional diffusion equation (aka. the Heat equation), a simple

linear problem convenient to set up the protocol which would be use to reconstruct operator on

non-linear partial differential equations. Let u be a time- and space-dependant solution to the Heat

equation on the domain Ω ⊂ R, the equation is defined as:

ut = κuxx, (3.1)

subject to periodic Dirichlet boundary conditions with initial conditions:

u(0, x) = u0(x), x ∈ Ω = (0, 1), (3.2)

u(t, 0) = u(t, 1), t ∈ (0, T ). (3.3)

17
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The equation 3.1 is known to have solutions satisfying its initial value conditions in the form

u(t, x) = e−k2teikx, k ∈ N (3.4)

u(t, x) = e−π2k2t sin(πkx) (3.5)

In the latest case, the operator K = − ∂2

∂x2 has eigenfunctions

ak(x) =

√
2

L
sin

(
πkx

L

)
(3.6)

with the eigenvalues

λk =
π2k2

L2
(3.7)

which form an orthogonal basis in L2(Ω). The solution u can be written in the form of

u(t, x) =
∑
k

cke
−κλktak(x), (3.8)

where (ck)
∞
k=1 represent the Fourier coefficients of the initial value. They are given by

ck =

∫
Ω
u0(x)ak(x) dx, k ∈ N. (3.9)

As k ∈ N and λk > 0, the solution decays when t increases since e−κλkt → 0. Therefore, for these

conditions the zero solution ∥u(t, x)∥ → 0 is stable. It should be noted that in this forward case,

we define stability in the fact that the perturbations will decay to zero. This analysis stand as

well for fixed boundary conditions of the u(t, 0) = u(t, 1) = 0, t ∈ (0, T ) at the condition that the

values tends to 0 for x = 0, 1.

Let S : u0 7→ uT denote the forward solver operator. Now, it should be highlighted that the

backward solving of the diffusion equation Su0(x) = u(T, x) is an ill-posed inverse problem. As

irregularities in the solution u(t, x) decay when solving forward in time, they get amplified when

solving backwards in time. Finding the initial conditions u0(x) from u(T, x) becomes exponentially

unstable, as observed in the Figure 3.1.

The ill-posedness of the elementary linear diffusion equation is a great instance of the difficulties

encountered when training a neural ordinary differential equation during the backward propagation

phase. As seen in the sensitivity analysis section 2.4.2, using a method such as back-solve adjoint

which requires the resolution of an ODE backward in time, while working with complex architecture

to represent the operator K will result in instabilities; triggering the necessity of the introduction of

check-pointing, as well as method such as interpolating adjoint which get rid of the ODE backward

resolution.

In the results we use Equation (3.8) to generate data-sets. We then learn Kθ, a discretizion of the

diffusion operator K = ∂2

∂x2 . Note that K can be discretized as a matrix K using a second-order
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(a) Initial state u(t, x) at t = 0 (b) Final state u(t, x) at t = 2

(c) Backward solution u(t, x) at t = 1.94 (d) Backward solution u(t, x) at t = 1.90

Figure 3.1: Heat equation with diffusion constant κ = 0.01, x ∈ Ω = (0, 1). The top figures
represent forward resolution of the equation using the Tsitouras 5 method, a 4th order 5-stage
Runge-Kutta method for t ∈ [0, 2]. The bottom figures represent the backward resolution of the
equation from t ∈ [2, 0]. Ill-posedness can be observed as the problem of retrieving the initial state

u0(x) from the final state u(t = 2, x) is exponentially unstable.

accurate central finite difference method:

K =
1

∆x2



0 . . . . . . . . . 0

1 −2 1

. . .
. . .

. . .

1 −2 1

0 . . . . . . . . . 0


. (3.10)

This approach acts as an efficient warm-up to check if data-driven methods are able to learn an

approximation to K.

3.3 Data-driven approximation method applied to linear equation

Before considering a non-linear case, we are interested into evaluating the efficiency of the op-

erator reconstructed while not spending computational resources on training neural network on
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high-dimension cases. We set-up a set of high-dimensional numerical solutions to the linear Heat

equation generated from different initial conditions. This data-set, see an example in Figure 3.2,

is based on the wave-like analytical solution described in the previous section 3.2.

(a) Down-scaled fine grid (b) Coarse grid (c) Absolute error

Figure 3.2: Heat equation with diffusion constant κ = 0.01, x ∈ Ω = (0, 1), t ∈ [0, 1]. The left
figures represents a fine grid resolution of the equation using the Runge-Kutta 5th order method
downscaled to a 64-by-64 grid. The middle figure represents a coarse grid solution to the equation.

The right figure shows the absolute error between the downscaled and coarse grid solutions.

The high dimensional solutions to the diffusion equation are used to create the down-scaled solu-

tions. Down-scaling is performed by averaging the results on the x-axis from the fine-grid over a

batch of cells. We highlight the fact that this example focuses on Markovian models where the

time evolution by definition only depends on the current state. Therefore the reduction of the

trajectory over time is done by a sampling at even intervals rather than averaging over a batch of

trajectories; the latest choice would generate non-Markovian models. Such a choice would require

the usage of a delay differential equation (DDE) rather than an ODE.

It can be observed that even for the elementary diffusion equation, a coarse grid cannot capture the

finest details of the FOM. It doesn’t reflect, like other simplest ROMs, the most detailed elements

of the simulation, this is especially visible in the non-linear problem case.

(a) No noise (b) Gaussian noise ϵ = 10−3

Figure 3.3: Objective function error after training a neural ODE using intrusive method with
regards to the L2 regularization. The figures contain different levels of Gaussian noise added to the
training data. The interpolation curve introduces evaluation on a new dataset. While full, training

and validation curves are based on the dataset used for training.
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In order to assess the effectiveness of NODEs to approximate a differential equation operator, we

generate a data-set of 256 reference solutions uref (t, x) with t, x ∈ (0, 2)×Ω using 64 snapshots over

time. The objective function uses the trajectory approach, as it was confirmed through experiment

that the derivative approach results in divergence of the resolution. The L2 regularization weight

is fixed at 10−8 according to the results in the Figure 3.3, a value which will be confirmed again in

the non-linear PDE experiments. As observed in Figure 3.4d, as Fθ is close to the true operator F

displayed in equation 3.10.

(a) Reference solution u(t, x) (b) Predicted solution uθ(t, x)

(c) Absolute error (d) Learned discrete diffusion operator Fθ

Figure 3.4: An instance of prediction returned by the approximated operator Fθ from the right-
hand side of the diffusion equation obtained with training of a NODE. The example is an interpo-
lation application as the initial condition used are not part of the original training and validation

data-set. x ∈ Ω = (0, 1), t ∈ [0, 1], κ = 10−2.

3.4 Discussion

In this chapter, we performed a first evaluation of the usability of ML models to infer the dynamics

of differential equations.

First, the linear diffusion equation gave us a concrete example of the difficulties brought in by the
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optimise-then-discretize approach when training NODE, given that method such as back-solve ad-

joint which consists in solving a differential equation backward in time, to obtain the loss derivative

with regards to the model parameters ∂L
∂θ , is inevitably an ill-posed inverse problem.

Next, given that the linear diffusion is the simplest model possible, it allowed us to analyse to-

gether its capacity to predict an accurate solution to the PDE but also how the model would be

parameterized. Using a simple layer, we observed that NODE would reconstitute an operator Fθ

close to the reference operator F . We hypothesize than NODE used to learn full right-hand side

of an equation, can and might aim at recovering the sub-lying linear and non-linear term of the

learned equations, rather than converging to a radically different model. This suggests that the

architecture of the NODE should be selected such that it can specifically handled the term of the

equation, for instance, using convolutional layers to approximate a derivative which would usually

be discretized using finite difference method.



Chapter 4

Evaluation of data-driven methods

applied to non-linearity

4.1 Introduction

The main task of this section is to apply the data-driven operator approximation methods reviewed

previously in the chapters 2 and 3 to approximate the model operators for a non-linear partial

differential equation. While the objectives of this part consist in the evaluation of the accuracy of

these approximated operators to interpolate solution from unknown initial conditions; this chapter

also answers interrogations on the choice of neural network architecture to handle non-linear terms

in the PDEs, and recover discarded information from a low fidelity model. As it will be seen

through experiments, while neural networks are known to be universal approximators of continuous

functions [HSW89], it remains a challenge to obtain a suitable approximation using acceptable

computational resources.

This chapter helps deepen our understanding of differentiable ODE solvers in the context of neu-

ral ODE training. To do so, the subsequent sections introduce the non-linear Bateman-Burgers

equation and its different variants (viscous and inviscid), and highlight some of the emerging phe-

nomena such as discontinuities (shock waves) in the inviscid Burgers equations. They cover the

known solution and the numerical methods implemented to compute the solution to the high fi-

delity model which will serve as a base for the training data-set used by the data-driven operator

approximation methods. Given that, the chapter also aims at evaluating the usability on closure

model for accurate predictions by using a neural ODE as an approximation to the right-hand side

of the equation or as a closure term associated to the well-known low fidelity model (POD-GP) of

the same equation, a case where low fidelity might generate more difficulties. It will briefly discuss

the analytical closure term conventionally used and its interest in the context of this thesis.

4.2 Bateman-Burgers equation

As an introduction to a non-linear case, the subsequent step consists in shifting the methodol-

ogy developed from the linear diffusion equation to the Bateman-Burgers equation. The Burgers

23
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equation represents the velocity u(t, x) at each instant t and location x of a viscous fluid (with

viscosity ν) flowing through an ideal pipe. This equation is of interests for the stability problems

resulting from its different form, given that its non-linearity has been used for modeling wide range

of phenomena such as shock waves, wave propagation, etc. where there exists balancing viscous

and convective forces.

Simplification of Navier-Stokes Consider the incompressible Navier-Stokes equations

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ ν∆u+G (4.1)

with density ρ, fluid viscosity constant ν, pressure p, external force G and u the flow velocity. If

we assume that there is no external force G and the pressure term p is negligible, then Equation

(4.1) leads to the non-conservative form of second-order viscid Burgers equation:

∂u

∂t
= −u · ∇u+ ν∆u. (4.2)

Here, u(t, x) is a time- and space-dependant flow velocity solution on the periodic domain Ω ⊂ R,
ν = µ

ρ is the kinematic viscosity (aka. diffusion coefficient), −1
2
∂u2

∂x is the the advection term, and

ν ∂u2

∂x2 is the diffusion term.

From equation (4.2), we can derive the Burgers equation in its conservative form, a form usually

preferred for numerical integration of non-linear problems for which the solution might develop

discontinuities (aka. shock waves):

∂u

∂t
= ν

∂2u

∂x2
− 1

2

∂u2

∂x
. (4.3)

Eventually, the non-conservative form leads us to consider the first-order inviscid Burgers equation

(ν → 0), from which such shock waves can emerge:

∂u

∂t
= −u∂u

∂x
. (4.4)

For simplicity, we always set the forcing term G = 0, likewise the spatial periodic boundary

conditions u(t, 0) = u(t, L).

4.2.1 Fourier spectral method for viscous Burgers equation

In order to compare low and high dimensional FOM of the system to ROM, the pseudo-spectral

method [BDH+86] (a function-space method) is used to solve the problem (4.2). This method

gives a smooth solution to the IVP and boundary value problem (BVP) on a periodic domain.

We approximate the solution u(t, x) of the equation (4.2) as a truncated sum of basis functions

(usually sin and cos waves) using the fast Fourier transformation (FFT):

u(t, x) ≈ ûn(t, x) =
∑
n

cn(t)e
iknx with kn =

2πfn
L

, (4.5)
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where cn are the discrete Fourier coefficients and (fn)n represent the discrete Fourier transform

(DFT) sample frequencies. The DFT and IDFT enable us to easily compute the derivatives of the

approximated solution un(t, x) (see Equation (4.5)).

ûx = ikûn (4.6)

ûxx = −k2ûn (4.7)

Substituting 4.5 into the PDE lets us generate a system of ODEs which can be easily solved using

the Tsit5 method (see the viscous solution in Figure 4.1). The approximated solutions computed

by the Fourier spectral method are used to generate the viscous Burgers data-set used to train the

NODEs.

(a) Conservative inviscid Burgers
equation (ν → 0)

(b) Non-conservative viscous burger
equation (ν = 0.01)

(c) Non-conservative viscous burgers
equation (ν = 0.1)

Figure 4.1: Evolution of the solution to the Burgers equation in non-conservative viscous and
conservative inviscid cases for x ∈ [0, 1], t ∈ [0, 2] with initial conditions u(0, x) = −x. The

formation of a shock can be observed in the inviscid case (left) at t = 1.

4.2.2 Godunov conservative schemes for inviscid Burgers equation

Not all methodologies can be applied to solve the different forms (conservative or non-conservative,

inviscid or viscous) of the Burgers equation, and it should be notice than the above implementation

of the pseudo-spectral method does not handle the inviscid (ν → 0) form of the equation. To

numerically solve it, we change our approach and consider the Godunov ’s conservative scheme.

Godunov’s scheme Suggested by Godunov [GB59], this method is based on finite volume meth-

ods [L+02] and typically used to solve hyperbolic PDE with discontinuities, such as inviscid Burgers

equation. In it’s simplest form it is a first-order accurate method in both time and space.

Let’s consider the hyperbolic problem

∂u

∂t
+

∂f(u)

∂x
= 0 (4.8)
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Let’s also define Un
i , a numerical solution at time tn, which approximate u(tn, x) on a grid cell i.

Un
i ≈

1

∆x

∫ x
i+1

2

x
i− 1

2

u(tn, x)dx (4.9)

With tn = n∆t, xi+k = xmin + (i + k)∆x. To get ride of the approximation, we define ũ(tn, x) a

step function which will depends on the grid discretization.

Un+1
i =

1

∆x

∫ x
i+1

2

x
i− 1

2

ũ(tn+1, x)dx (4.10)

The above formulation means we are using Un
i to define u(tn, x) on a discretized grid space xi− 1

2
<

x < xi+ 1
2
.

We need to integrate the problem over [xi− 1
2
, xi+ 1

2
] and obtain the cell average, however it is not

necessary to perform the explicit integration in (4.10) as ũ(tn+1, x) would be too complex. Instead,

the step function ũ(t, xi+k) is constant in time, so we can use it. Let’s consider the integral form

of conservation law [L+02]:
∂

∂t

∫ xb

xa

u(t, x)dx = F (xa)− F (xb) (4.11)

It can be rewritten as
∂

∂t

∫ xb

xa

u(t, x)dx = f(u(t, xa))− f(u(t, xb)) (4.12)

Then, from the previous definition of Un+1
i in equation (4.10), we can define the derivative

∂Ui

∂t
=

1

∆x

(
f(u(t, xi− 1

2
))− f(u(t, xi+ 1

2
))
)

(4.13)

And infer the equation

U t+1
i = U t

i −
1

∆x

(
f(u(t, xi+ 1

2
))− f(u(t, xi− 1

2
))
)

(4.14)

We can then define the numerical flux functions F (X,Y ) based on the integral over time, easier to

handle, such that:

F (Un
i−1, U

n
i ) =

1

∆t

∫ tn+1

tn

f(u(t, xi− 1
2
))dt (4.15)

F (Un
i , U

n
i+1) =

1

∆t

∫ tn+1

tn

f(u(t, xi+ 1
2
))dt (4.16)

Replacing the integral in the previous equation (4.14) leads to the Godunov’s formulation:

Un+1
i = Un

i −
∆t

∆x

(
F (Un

i , U
n
i+1)− F (Un

i−1, U
n
i )

)
(4.17)



Chapter 4 Evaluation of data-driven methods applied to non-linearity 27

While we now have the Godunov’s formulation used to solve the hyperbolic problem (4.8), we still

needs to compute the numerical flux (4.16) composing it. The next step then requires to compute

at least an approximated solution to a Riemann problem.

Riemann problem The Riemann problem is used in finite-volume methods and consists of

hyperbolic equations with specific initial data. Usually it has the form

f(x, 0) =

{
fa x ≤ 0,

fb x > 0.
(4.18)

Solving the problem between two states Un
i−1 and Un

i let us determine the numerical flux Fn
i− 1

2

required in Godunov’s method. We consider here a method to approximate Riemann solution has

it is computationaly expensive to solve it exactly.

4.3 An application to closure modeling

The previous chapter gave us insights on usage of NODEs and stability of the network training

while the previous section introduces the Burgers equation and the schemes used to compute a

solution using a FOM (i.e. the Fourier pseudo-spectral method or Godunov method depending on

the PDE parametrization). The FOM model is visualized in Figure 4.2.

Figure 4.2: Architecture of a full-order model (model 1). From u(t), we use an ODE solver to
compute u(t+∆t). This model is used for every reference data either for down-scaled problem or

true POD coefficient.

We now evaluate the efficiency of the methods used to approximate the operators when applied

to closure modeling. As part of this thesis work, we define two different approaches with the

down-scaling and POD-Galerkin projection types of problems.

4.3.1 Down-scaling problem

The down-scaling problem was already introduced with the diffusion equation. From a high-

dimensional fine grid solution u(t), a reference down-scaled solution v(t) = Du(t) is used as a point

of comparison to evaluate the data-driven method approach. From a coarse grid field v, we can

also reconstruct a fine grid field using an upscaling operator U .

v(t) = Du(t), D down-scaling, v(t) ∈ P (4.19)

urom(t) = Uv(t), U up-scaling, urom(t) ∈ RNx (4.20)
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The models encompassing the equation’s right-hand side are summarized in Table 4.1. They consist

of a pure neural ODE (i.e. model 3), or a closure model composed of the baseline low-dimensional

coarse grid solution (i.e. the baseline model 2), and a closure term (i.e. model 4). It is interesting

to consider this problem to retrieve the dynamics of a non-linear equation on a lower scale, which

might include discontinuities (i.e. inviscid equation) or high-frequencies (i.e. Korteweg–De Vries

equation).

N Model Formulation Definition

1 Full-order model dv
dt = Df1024(u) Downscaled fine grid discretization

2 Baseline model dv
dt = f64(v) Coarse grid discretization

3 Pure NODE dv
dt = NN(v; θ) Neural ODE encompassing model

4 Neural closure model dv
dt = g(v) + NN(v; θ) Coarse grid + Neural ODE for unresolved terms

Table 4.1: Different ODE models for the coarse-grid field v(t) = Du(t). Contrary to POD
problem, v(t) is not a projection of u(t) onto global modes, but represents a coarser discretization

of the same continuous field.

However, this approach cannot be considered as an appropriate ROM given that the computational

complexity isn’t thoroughly reduced. An appropriate reference would be u(t) instead of the down-

scaled v(t), a problem which can be related to the super-resolution topic. This can be done by

considering a ROM able to reduce the ODE system to solve.

4.3.2 Proper orthogonal decomposition problem

Next, we introduce the well-known POD problem type [OT13] [APS+21], from which we investigate

ROM able to drastically reduce the dimension of the ODE system to solve. The full order model

solution u is projected onto modes stored as columns in the matrix Φ. The coefficents are denoted

by a = Φ⊺u, and the ROM prediction is reconstructed from the coefficients: urom(t) = Φa(t). The

different models for the evolution of the coefficients a are presented in Table 4.2.

N Model Formulation Definition

1 Full-order model da
dt = Φ⊺ffom(u(t)) Projected reference model

2 Baseline model da
dt = g(a) = Φ⊺ffom(ū+Φa) POD + Galerkin projection

3 Pure NODE da
dt = NN(a; θ) Neural ODE encompassing model.

4 Neural closure model da
dt = g(a) + NN(a; θ) ROM + Neural ODE for unresolved terms

Table 4.2: Different ODE models for the POD coefficients a(t) = Φ⊺u(t).

Proper orthogonal decomposition

The original idea behind proper orthogonal decomposition (POD), which can be related to the

principal component analysis (PCA), focus on determining a space X t = span{θ1...θNt}, known as
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POD modes, which approximate the snapshot of a random vector field u(t) solution to the model

studied, catching the main features of it with regards to the norm L2 [Wei19].

The first step consists of generating a snapshot matrix in the discrete domain, composed of a set

of snapshots of the normalised solution û(t, x) over time (ū are the time-averaged spatial values).

S = [ũ1|ũ2|...|ũNt ] ∈ RNx×Nt (4.21)

ũi = ui − ū (4.22)

ū =
1

Nt

Nt∑
i=1

ui (4.23)

The basis are obtained in the next step using the singular value decomposition (SVD)

UΣV ⊺ = S (4.24)

where U ∈ RNx×Nx and V ∈ RNt×Nt are an orthogonal matrices, and Σ ∈ RNx×Nt a rectangular

diagonal matrix containing the singular values. Eventually we are able to obtain the POD ROM

Û = Φr Φ⊺
rU . The POD approach is presented in Algorithm 3.

Algorithm 3: SVD based Proper orthogonal decomposition

Require: M, k
1: M̄ ← mean(M) ▷ Temporal mean
2: S ←M − M̄ ▷ Normalize
3: UΣV ⊺ ← SV D(S)
4: Φr ← U [:, 1 : k] ▷ Reduce basis
5: M̂ ← Φr Φ⊺

rM + M̄ ▷ Reduce model
6: return Φr, M̂

We note that an eigenvalue decomposition approach was also considered (see Appendix B), both

approaches are intimately related. Some of the papers which served as a base of the work of this

chapter, used the different approaches to determine reduced basis. While the SVD is suitable for

non-square matrices and remain in a domain of real values as long as the matrix decomposed U ∈
Rn×m; the eigenvalue decomposition is only usable with square matrices, moreover, unsymmetrical

real matrices might lead to complex eigenvalues and eigenvectors. Because of the latest point, the

complexity to solve eigenproblem make it unsuitable for large asymmetric matrices. Given that

data-set used are composed of asymmetric large matrices in the real domain, we settled for the

SVD approach.

The orthogonality property of the POD basis Φ at hand allow us to perform a Galerkin projection

onto a reduced space P. Usually, the energy contribution criterion is used to choose the optimal

number of POD bases retained in P such that it maintains a pre-defined energy percentage ϵ:∑Nr
i=1 λi∑Nx
i=1 λi

⩾ ϵ, (4.25)

where Nr is the number of retained basis modes among the total (Nx) amount of modes, (λi)
Nx
i=1

are the eigenvalues of S⊺S, and ϵ ≈ 0.999.



Chapter 4 Evaluation of data-driven methods applied to non-linearity 30

Galerkin Projection

The POD basis provides us with the underlying dynamics of the model. Let’s consider a non-linear

equation under a generic ODE formulation. The full order model operator f can be decomposed

into a linear part L and non-linear part N :

du

dt
= f(u) = L(u) +N(u). (4.26)

We can approximate the FOM solution u(t) in a low-dimensional subspace as a composition of the

reduced basis using the Galerkin method:

a(t) = Φ⊺(u(t)− ū), (4.27)

resulting in the approximation

u(t) ≈ ū+Φa(t), (4.28)

where Φ ∈ RNx×Nr is the reduced basis, a(t) ∈ RNr are the time dependent coefficients, and

ū ∈ RNx is a reference field (e.g. a time average).

Now, we use the orthogonal property of the POD basis Φ⊺Φ = I, so that we can express the equation

(4.26) in a reduced basis. The idea consists in using the approximation (4.27) as a replacement in

the equation (4.26). Considering ū and Φ are independent from t, we simplify the equation

da

dt
=

d

dt
(Φ⊺(u(t)− ū))

= ΦT du

dt

= ΦT f(u)

≈ ΦT f(ū+Φa)

= Φ⊺L(ū) + Φ⊺L(Φa) + Φ⊺N(ū+Φa).

(4.29)

By grouping together the constant (B), linear (L), and quadratic (N ) parts (with respect to a),

we obtain the equations
da

dt
= B + La+ a⊺Na. (4.30)

Using the three operators B, L, and N adapted to the equation studied, the equation can be solved

by using Runge–Kutta or equivalent methods.

We remember the decomposition (4.27) where a(t) = Φ⊺(u(t)− ū) and the system (4.29). This is

the baseline model da
dt = Φ⊺f(ū + Φa) (i.e. model 2 in Table 4.2) used as a point of comparison.

We highlight that the above model can be implemented directly in the experiment, or slightly

improved by computing the operators offline. Indeed, consider the Burgers equation

∂u

∂t
= ν

∂2u

∂x2
− 1

2

∂u2

∂x
, (4.31)
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It can be discretized using the finite difference operators Dx and Dxx representing the continuous

operators ∂
∂x and ∂2

∂x2 respectively:

du

dt
= f(u) = νDxxu︸ ︷︷ ︸

L(u)

− 1

2
Dxu

2︸ ︷︷ ︸
N(u)

. (4.32)

Using the approximation (4.28) for u(t), we retrieve a system of ODEs for the modal coefficients

a(t) as in (4.30):

dak
dt

= Bk +
Nr∑
i

Likai +
Nr∑
i

Nr∑
j

N ij
k aiaj . (4.33)

The constant, linear, and quadratic parts may be precomputed as follows:

Bk = φ⊺
k

(
νDxxū−

1

2
Dxū

2

)
, (4.34)

Lik = φ⊺
k (νDxxφi −Dx(ūφi)) , (4.35)

N ij
k =

1

2
φ⊺
kDx(φiφj), (4.36)

where φk denotes the k-th column of Φ and 1 ≤ k ≤ Nr. The results are the same but the

computation time is substantially improved.

Again, a neural ODE encompassing model (i.e. model 3 in the Table 4.2), and a closure model

composed of the baseline Galerkin projection model and a closure term (i.e. model 4) are evaluated.

Figure 4.3 helps to visualize how the POD approach is of interest for its capacity to reduced

dimensions of the system, and how NODEs could be helpful. This latest part is motivated by the

work of Maulik [MML+20] and [GL21] who both used this approach for NODE and memory-based

model such as LSTM and NDDEs. However, the experiments were restricted to a single condition

and focus on the prediction over time. In our experiments, we rather try to apply this approach

to large set of snapshots u(t).
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(a) Baseline model (model 2)

(b) Pure neural network model (model 3)

(c) Neural closure model (model 4)

Figure 4.3: Architecture of evaluated reduced order models used in the POD-projection problem.
Notice that these schema do not subtract the temporal mean ū, this case corresponds to a context
where the temporal mean would be ū = 0, a possibility if the POD basis are computed on a
large trajectories data-set. Or if the POD-basis are build wihtout subtracted mean, therefore
encompassing its influence. To corresponds to the Galerkin projection methodology listed above,
the schema should replace Φ⊺u0 by Φ⊺(u0 − ū), in a same way Φv(t) would become Φv(t) + ū
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Numerical experiments and results

5.1 Introduction

We performed a range of numerical experiments on simulated data with the main objective of

studying the efficiency of data-driven reconstruction methods when applied to non-linear differential

equations. Some of the methodologies and tools were already introduced in the Chapter 3. They

are extended in this chapter to answer most of the research questions evoked in our introduction.

To do so, multiple questions arise including the choice of an objective function, the selection of an

optimisation algorithm, the sensitivity to initialisation and to conditioning, and fundamentally on

the choice of architecture to learn non-linear term of the PDE. This first section provides to us

the tools to tackle the problem of how to parameterize the operator Fθ depending of the problem

considered. As it will be discussed, the answer is not universal and the architecture of the problem

depends on the ROM selected (pure encompassing neural network or closure model), as well as the

problem type it tries to tackle such as down-scaling (to a coarser grid on the same space) or POD

projection (onto a different space of global coefficients).

5.2 Packages

During the past few years, a wide range of packages and libraries were developed in the field of

scientific machine learning. This thesis take advantage of the open source modules available in

the JULIA language SciML ecosystem for the following numerical experiments, allowing us to not

re-implement most of the algorithms evoked.

DifferentialEquations.jl An ecosystem for solving differential equations. Offers the implemen-

tation of (non-)stiff ODE solving algorithm such as Runge-Kutta methods [RN17].

SciMLSensitivity.jl Sensitivity Analysis and Adjoints. Adjoint method for back-propagation in

neural differential equations [MDI+21].

Flux.jl Abstraction to define Machine Learning model [ISF+18]

33
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DiffEqFlux.jl Adaptation of Flux.jl package to neural differential equations and universal dif-

ferential euations [RIM+19].

Zygote.jl Next-generation source-to-source automatic differentiation (AD) system [Inn18].

Optimization.jl A wrapping package for a large scope of local and global optimization algorithms

(i.e. ADAM).

5.3 Training procedure for data-driven approximation method

5.3.1 Data and metrics

We select two sets of initial conditions all with periodic boundary conditions.

The first set uses a Gaussian stochastic process to generate similar waves in order to evaluate data-

driven methods to prediction on a single case while excluding the complex interaction of multiple

waves.

u0(x) =
1

σ
√
2π

e−
1
2(

x−µ
σ )

2

(5.1)

(a) Down-scaled fine grid (64× 64) (b) Coarse grid (64× 64) (c) Absolute Difference (64× 64)

Figure 5.1: Evolution of a solution of inviscid Burgers equation using Gaussian-based initial
conditions. With x ∈ [0, π], t ∈ [0, 6], ν → 0.

The second set uses a Fourier series to generate initial conditions and random variation in the phase

and amplitude decay. These conditions create snapshots rich in information, an advantage to train

the neural network. It also enables simulation of random shock discontinuities in the inviscid

Burgers equation, one of the phenomena we aim at recovering in our operator reconstruction

[HDK14]. The complexity of the interacting shock wave will enable us to experiment on the

capacities of the approximated operator Fθ obtained to interpolate for each form of the equations.

u0(x;ω) =
K∑
k=1

(
ak(ω) sin

(
2πkx

L

)
+ bk(ω) cos

(
2πkx

L

))
(5.2)

where ak(ω) = −sin(ϕ ∗ ω), bk = cos(ϕ ∗ ω) follow a one-point probability density function (PDF)

follow a Gaussian distribution with ω = {µ = 0, σ2 = 1}. A large K generates rugged initial
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conditions resulting in shock discontinuities early over time while a low K will give smoother con-

ditions and discontinuities later over time. The final time t is eventually extended for extrapolation

(prediction) tasks.

(a) Down-scaled fine grid (64× 64) (b) Coarse grid (64× 64) (c) Absolute difference (64× 64)

Figure 5.2: Evolution of one solution to the viscous Burgers equation using Fourier initial condi-
tions. With x ∈ [0, π], t ∈ [0, 2], m = 40, ν = 0.04.

(a) Down-scaled grid (64× 64) (b) Coarse grid (64× 64) (c) Absolute difference (64× 64)

Figure 5.3: Evolution of one solution to the inviscid Burgers equation using Fourier initial con-
ditions. Discontinuities (shock waves) are observable. However, low order models smooth the
underlying dynamics with heavy loss of information. With x ∈ [0, π], t ∈ [0, 2], m = 40, ν → 0.

In all cases, we start with a fixed diffusion parameter ν to evaluate accuracy of our model to

reconstruction and prediction tasks in a simplified context. Eventually, we consider the extension

of Burgers equation parameters to a range of values as it is of interest to determine if data-driven

method are sufficient to infer parameters of the dynamical system studied.

Objective function The main objective of the neural network consists in building an accurate

approximated operator Fθ for interpolation (reconstruction inside the training interval) and ex-

trapolation (prediction outside of training interval). In this context of supervised training, the

neural network is expected to match the known training data and predict accurate results with

the unknown validation and test data-sets. We recall the two approaches for the initial choice of

objective function (based on either the L2 or MSE error functions) which must be considered the

a-priori approach (derivative fitting) or the a-posteriori approach (trajectory regression).
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As we aim at analysing this accuracy, there are two approaches for the initial choice of objective

function (based on either the L2 or MSE error functions) which must be considered: the intrusive

approach (trajectory regression) as well as the non-intrusive approach (model regression).

A-priori approach L(θ) =
∥∥∥Fθ(t, u)− du(t)

dt

∥∥∥2
2

A-posteriori approach L(θ) = ∥uθ(t)− u(t)∥22

Such that uθ(t) and u(t) are respectively the predicted and true solutions, Fθ the approximated

model, therefore we look for Fθ∗ , where θ∗ = argminC(θ) is the optimal model resolving the IVP.

The a-priori approach evaluate the operator itself through a comparison with the derivative du
dt ,

while the a-posteriori approach use the solution obtained when solving the ODE which corresponds

to the PDE-constrained optimization problem we described in our introduction. We eventually

settled for the a-posteriori approach. Early experiments on the hyper-parameters tuning resulted in

the absence of convergence using the a-priori approach. Indeed, if an operatorK = Fθ approximates

the derivative correctly, it does not imply it will obtains a correct prediction.

Optimization algorithm In order to minimize the solution to the PDE-constrained optimiza-

tion problem, it was first decided to make usage of the well-known adaptive moment estimation

(ADAM) optimization algorithm [KB14]. Indeed, the measurements of the true solution to the

equation, which inevitably involve some noises, despite the choice of an appropriate numerical

resolution scheme, make a stochastic optimization method such as ADAM an acceptable choice.

Considering our noisy cost function Cθ, the method determine learning rates for different parame-

ters from estimation of the first and second moments of its gradients, while adapting the step size

based on the computed gradient, until convergence. It is a combination of the properties of the

previous ADAGrad[DHS11] and RMSProp algorithms.

Regularization As mentioned before, over-fitting of data is one of the common issues likely to

happen in neural network training. In the current context, while including stochasticity the initial

conditions still use a similar pattern. It is, therefore, a requirement to consider regularization. In

a first time, with the choice of a feed-forward neural network architecture, we consider the simple

L2 regularization (weight-decay).

5.3.2 Model investigation: architectures for neural ordinary differential equa-

tion

The choice of neural network architecture is subject to scrutiny given that it needs to be able to

handle the non-linearity term of the Burgers equation, as seen in the section 4.2. While multi-

ple architectures such as convolutional neural network or auto-encoder [LC20] are considered; the

universal approximation theorem [HSW89] tells us that feed-forward network architectures com-

posed of a single hidden layer (and enough neurons) are sufficient to approximate any measurable

function f : Rr → R. Therefore, we investigate in a first time a standard multi-layer feed-forward

network architecture as a direct approximation model Fθ, before considering more appropriate
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architecture. We highlight the fact that such architecture will be used to model the closure term

ϵθ in the POD-based ROM.

Activation function We fix a linear activation function for the output layer has the regression

problem we are solving requires unbounded output. For the hidden layers we settle for the hyperbolic

tangent t(z) = tanh(z): its differential h′(z) = 1 − tanh2(z) make it useful for back-propagation,

its range tanh(z) ∈ [−1, 1] is of interest as it suffer less from vanishing gradient problem than the

logistic sigmoid function σ(z) ∈ [0, 1]; in addition to be continuously differentiable, a requirement

for the back-propagation through ODEs, therefore excluding functions like ReLU(z).

Figure 5.4: Visualization of activation functions

Initialization Initializing weights close to 0 would improve training as disturbing a nearly con-

stant values is easier than dynamic random values. However, weights too close to zero will make

variance of the input decreases through each hidden layers, leading to again a vanishing gradient

problem. The Xavier initialization, which assume that variance of the objective function to be

constant through each hidden layers was developed with this problem in mind. While it might be

less efficient for neural ODE, we consider this initialization at least for our hyper-parameter tuning

as a way to avoid the above problem.

Multi-layer feed-forward neural network

To begin, we consider a ROM where pure NODE approximates the right-hand side of the equation

(i.e. model 3 in Table 4.1). We investigate the efficiency of the multi-layer feed-forward neural

network to approximate operator Fθ. The first interrogation concerns the number of hidden layers

and neurons which will compose the feed-forward network. We perform a search in the hyper-

parameter space for different number of hidden layers and neurons, then evaluate the final intrusive
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objective function results. The neural network is trained on on a small data-set of 196 initial

conditions with the diffusion parameter ν = 0.04. It uses an initial learning rate lr = 0.003, a fixed

batch size β = 32, regularization is also applied with a fixed weight decay λ = 10−7 and addition

of Gaussian noises to the input data (σ = 0., 0.05). We use the mean square error (MSE) as an

objective function.

(a) No Gaussian noise (b) Gaussian noise (ρ = 0.05)

Figure 5.5: Validation objective functions (MSE) resulting from training feed-forward network
for different number of hidden layers and neurons. Gaussian noise are added to the prediction û

considered to avoid over-fitting with ρ being the standard-deviation.

As seen in the Figure 5.5, regularization provides more accurate results on the validation data-set.

The selection of the deep feed-forward neural network architecture as an approximation of Fθ is a

compromise between the number of hidden layers and neurons. Increasing the number of hidden

layers enables the neural network to produce increasingly more abstract patterns fL by mapping

the input f0 through a series of non-linear activation functions σi and parametrization functions αi.

Withal, deeper neural networks are also more difficult to train: after propagating through several

hidden layers the vanishing gradient problem might arise, the loss surfaces have many local minima

giving similar performance on validation set making it more difficult to find global minimum or

good local minima [CHM+14].

Hyper-parameter values

Weight decay λ [10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1]

Noise [.35, .3, .25, .2, .15, .1, .05, .01]

Batch size [8, 16, 32]

Learning rate [0.01, 0.003, 0.001]

Table 5.1: Hyper-parameter tuning of the feed-forward neural network. The error metric sta-
bilised at L(θ) = 0.01 after 100 epochs.

Nevertheless, with regards to the results obtains it can be observed that the MSE remains high. To

investigate further, we fixed a feed-forward network consisting of 3 layers, 32 neurons and evaluated

on a wider range of parameters: regularization (weight decay and noise) parameters, learning rate,

batch size, initial condition set size and number of epochs. The objective function results obtained,
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and interpolation on test set did not improve beyond L(θ) = 0.01, confirming the importance of

handling the non-linearity of the Burgers equations.

Convolutional neural network

With regards to the terms composing the Burgers equation 5.3 in its viscous and inviscid form, a

choice of a CNN rather than a fully-connected FNN architecture appears more appropriate.

∂u

∂t
= ν

∂2u

∂x2
− 1

2

∂u2

∂x
= L(u) +N (u) (5.3)

1. The kernel from the convolutional layers, assuming the choice of a sufficient size, should be

able to learn efficiently the first and second-order derivatives respectively associated to the

non-linear and linear term of the equation5.3, as it will focus on the local neighboring values

of uni on the discretise spatial domain.

2. The main difficulty resides in learning the non-linear term. As seen previously, it would

requires to work on an architecture able to learn such term (for instance using a cross corre-

lation hidden layer). Instead, a simple option consists into providing to the neural network

u2, as the equation 5.3 contains a quadratic term. Therefore, instead of receiving u ∈ RNx ,

the neural network will have a layer generating a 2-dimensional matrix U ∈ RNx×2 : [u, u2].

In a similar manner to FNN, we perform a search in the parameters spaces to tune the CNN

architecture, see Table 5.2. Despite the short amount of epochs e = 100, the search enable us to

discard less appropriate architectures. While the optimal parameters correspond to the extreme

Hyper-parameter Values Optimal

Channels [2, 2, 1], [2, 4, 4, 2, 1], [2, 4, 8, 8, 4, 2, 1] [2, 4, 8, 8, 4, 2, 1]

Kernels [3, 5, 9] 9

Batch size [8, 16, 32] 8

Learning rate [0.01, 0.003, 0.001] 0.1

Table 5.2: Description of the convolutional neural network

parameters, which suggest it might be worthy to extend the parameters’ range, we eventually settle

on the architectures described in the table 5.3 to perform the subsequent long-term training of our

Neural ODE, given that the computational resources remain limited. Indeed, the small-scale of the

grid discretization does not make GPU more efficient than CPU. The number of time step being

the limiting factor.
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Layer Type Channels Activation Parameters

1 Periodic extension / / /

2 u 7→ [u, u2] (1, 2) / /

3 Convolutional (2, 4) Hyperbolic Tan 76

4 Convolutional (4, 8) Hyperbolic Tan 296

5 Convolutional (8, 8) Hyperbolic Tan 584

6 Convolutional (8, 4) Hyperbolic Tan 292

7 Convolutional (4, 2) Hyperbolic Tan 74

8 Convolutional (2, 1) Hyperbolic Tan 19

9 Linear - Reduce / / /

Table 5.3: Convolutional neural network architecture used to learn non-linear Burgers equation
using Neural ODE with parameters θ ∈ R1341. The kernel provides an efficient method to learn first
and second-order derivative, while the quadratic term is directly provided to remove the difficulty

of learning the non-linear term.

5.4 Approximation of Burgers equation through down-scaled based

ROM

Before evaluating the models described in Table 4.2, we are interesting into the approximation of

the right-hand side through pure neural ODE. This analysis similar to the one performed in the

chapter 3 but applied to a non-linear equation. It also extends directly the previous section whose

model investigation focused mostly on pure neural differential equations. We consider the reduced

model based on down-scaling of a FOM.

5.4.1 Data and metrics

Parameters Values

Solutions 256 (192 training & 64 validation)

Epochs 500

Batch size 16

Optimizer Adam - lr = 0.001, β = (0.9, 0.999)

Regularization Weight decay λ = 10−7

ODE solver Tsitouras 5/4 Runge-Kutta scheme (Tsit5)

Method Interpolating Adjoint + Automatic Differentiation

Table 5.4: Neural ODE training parameters



Chapter 5 Numerical experiments and results 41

First, the training and the evaluation of the model Fθ (e.g model 1 in Table 4.2) are performed

on a set of solutions u ∈ R64×64 to the viscous Burgers equation based on the Fourier series initial

conditions (see Equation 5.2). Similar training and validation data-sets were generated for the

inviscid Burgers equation.

The set is composed of Ns = 256 solutions u ∈ RNx×Nt , such that the FOM is discretized on

Nx = 64 grid points. The time step ∆t use an adaptive algorithm with an absolute and relative

tolerance fixed at 1e − 6 (i.e. locally correct to 6 digits), but only Nt = 64 time snapshots are

conserved for experiments. 3
4 of the solutions are used for training and 1

4 for validation. As stated

earlier on, the neural network model Fθ receive the initial condition u0 = u(0, x) ∈ RNx for each

solution as an input to reconstruct uθ(t, x) ∈ RNx×Nt , the prediction of the solution to Burgers

equation.

Like in the architecture investigation, we use the a-posteriori approach to perform ridge loss opti-

mization of the model Fθ∗ where

θ∗ = argmin
θ

C(θ) = argmin
θ
Lmse(θ) + λ ∥θ∥22 (5.4)

Lmse(θ) =
1

NxNt

Nx∑
i=1

Nt∑
j=1

(
ujθi − uji

)2
(5.5)

Given that the Burgers equation is considered a non-stiff equation, the Tsitouras 5/4 Runge-Kutta

scheme (Tsit5) is used by the Neural ODE during training, a method known for its relative stability.

5.4.2 Results: Viscous Burgers equation

The model is evaluated on a test data-sets composed of 32 solutions not used during training.

For each of these reference solutions, the initial condition is feed to the NODE which generates a

prediction for the same reference time steps.

The Figure 5.6 provides an instance of prediction obtained from the model which generated the

best results.

The results obtained after evaluating the different models and approaches on the test-dataset are

visible in the table 5.5. Each one of these models were train at least 3 times. We then selected

the model which generated the optimal results on the test data-set. It can been observed than the

difference between results obtained from the DO and OD approach remains quite close, even if the

Optimise-then-Discretize provided slightly better results.

5.4.3 Results: Inviscid Burgers equation

The previous experiments emphasised the efficiency of models obtained through NODEs when

applied to viscous Burgers equation 4.3. This choice was made due to the absence of discontinuities,

shocks, with the presence of a linear term. A point of interest lies in evaluating the efficiency of the

method to interpolate in the case of inviscid Burgers equation (ν → 0). This time, the previously

selected models, see Tables 5.3 and 5.4, were trained and evaluated on the inviscid Burgers equation
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(a) Down-scaled reference u(t) (b) Prediction uθ(t) for model 3 (c) Absolute difference |uθ − u|

(d) True solution u = F (u0) (e) Prediction uθ(t) for model 4 (f) Absolute difference |uθ − u|

Figure 5.6: An instance of a prediction to Viscous Burgers equation interpolated from an initial
condition vector u0 from the test data-set (not validation data-set). x ∈ [0, π], t ∈ [0, 2], ν = 0.04,
µ = 10 for the pure NODE and the neural closure models. In this specific case, the mean square
error between the pure NODE model and reference solution is Lθ ≈ 0.03. For the neural closure

model Lθ ≈ 0.002.

N Model Mean square error (MSE)

Optimise-Discretize Discretize-Optimise

2 Baseline (coarse) 0.064 0.0734

3 Pure NODE 0.0076 0.0092

4 Neural closure model 0.0022 0.0031

Table 5.5: Mean square error for the different evaluated model on the Burgers equation on a test
data-set of 32 solutions. Model were trained using the Optimise-then-Discretize approach (continu-
ous model with Tsitouras5 method),and the Discretise-then-Optimise approach (continuous model

acting as discrete model with Forward Euler)

referenced solution obtained from the initial conditions u0 5.2 with the Godunov schema described

in the methodology chapter.

Unlike viscous Burgers equation, the results obtained suggest that while the NODE succeed to cap-

tures the main dynamics of the ODE, the discontinuities of the ODE requires a different approach

to be covered properly. The Figure 5.9 shows how discontinuities get smoothed over time.
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(a) True solution u = F (u0)
(b) Approximated solution uθ =

Fθ(u0)
(c) Absolute difference |uθ − u|

Figure 5.7: The pure NODE model also predict hopeful results on test data-set using different
initial conditions and a longer time series(extrapolation). Gaussian-based initial condition with

single wave with x ∈ [0, π], t ∈ [0, 4], ν = 0.04. The mean square error is L ≈ 9× 10−4.

(a) True solution u = F (u0)
(b) Approximated solution uθ =

Fθ(u0)
(c) Absolute difference |uθ − u|

Figure 5.8: An instance of a prediction to Inviscid Burgers equation interpolated from an initial
condition vector u0 from the test data-set (not validation data-set). x ∈ [0, π], t ∈ [0, 2], ν = 0,

µ = 100 for the pure NODE.

5.4.4 Discussion

Firstly, 500 epochs might be considered as a short training time. However, we discard this concern

as we highlight the fact that the number of epochs has been fix based on hyper-parameter tuning

performed while training these neural networks (from 100 epochs to 500 epochs). The choice of

trajectory fitting rather than derivative fitting associated to a large number of trajectories in the

training data-set, resulted in a slower but more optimal training of the models as well. Based on

the above experiments, we are able to give insight to some of our research questions.

1. First of all, it appears that the choice of the neural network architecture is of primary im-

portance to parametrize the operator Fθ. The non-linear terms play a role of importance

to infer an approximated operator whose accuracy would make of it an alternative to the

coarse-grid baseline model. In the viscous Burgers equation instance, it was observed during

the early investigation than the absence of the non-linear term u2 leads to a mean square

error Lmse(θ) ≈ [0.05, 0.1] on the validation data-set using a pure NODE. In comparison, this
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Figure 5.9: Prediction of a solution to Inviscid Burgers equation at time t = [0, 0.5, 1.5]. The
prediction failed to handle the shock of the ODE. x ∈ [0, π], t ∈ [0, 2], ν = 0, µ = 100 for the pure

NODE.

same model would give a MSE of Lmse(θ) ≈ 0.001 both for O-D and D-O approaches when

including the non-linear term.

2. Next, not every dynamics property of a non-linear PDE can be inferred, at least on a coarse

model. While we have observed than the viscous Burgers equation could successfully be

modeled both with a encompassing neural network or a closure model, this approach failed

on the inviscid case. The inviscid Burgers equation (and viscous where the diffusion ν → 0,

also known as high Reynolds number), is known to be notoriously difficult to solve. In the
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experiments of this thesis, not only both pure NODE and closure models failed to handle the

shocks appearing over time, but the modeling of smooth sections was also impacted. This

latest point suggests that the quadratic term of the differential equations brings some stability

during the training of the neural network, in a similar way to the addition of Gaussian noise

for regularization. We formulate the hypothesis that such instances can only be handled on

a fine-grid. However, this defeat the purpose of our experiments which aimed at evaluating

efficiency of NODEs on low-dimensional simulations.

3. Finally, we highlight the fact that these models were also trained on the Korteweg–De Vries

equation, a mathematical model of waves on a shallow water surface. The main point of

considering this equation lies in the fact that the Burgers equation remains a simple case given

that its behavior consists in traveling wave and the diffusion parameter make its long-term

behavior is easily predictable. This was confirmed by the Figure 5.7. On the contrary, the

Korteweg–De Vries equation does not suffer from dissipation and could be used for long-term

prediction. Additionally, its linear (Third-order derivative uxxx) and non-linear components

(u2) were close to the viscous Burgers equation and suggested the same pure NODE model

3 would make accurate prediction when trained on it. It resulted than the training failed

to converge to a local nor global minimum. This suggests that, just like for the inviscid

Burgers equation, a consideration of the terms of the differential equations is not enough

to get a proper architecture, dynamics (in the case of Korteweg–De Vries it would be high-

frequencies) need to be handled individually.
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5.5 Approximation of Burgers equation through POD based ROM

5.5.1 Data and metrics

First of all, we reproduce some of the experiments from Maulik. To do so, we complement the

data-sets introduced in the section 5.3.1 with a analytical solution to the Burgers equation based

on a Gaussian function

u(t, x) =
x

t+1

1 +
√

t+1
exp( 1

8ν )
exp

(
1
ν

x2

4t+4

) (5.6)

such that training will be using the initial and boundary value conditions

u0(x) =
x

1 +
√

1
exp( 1

8ν )
exp

(
1
ν
x2

4

) , x ∈ Ω = [0, 1], u(0, t) = u(1, t) = 0 (5.7)

This simple pattern allows us to experiment in reconstructing the closure term in the case of ROM

such as POD-Galerkin projection to capture the full evolution of the solution.

(a) Downscaled surface (64× 64)
(b) POD (64× 64) (c) POD GP (64× 64)

Figure 5.10: Evolution of a solution to inviscid Burgers equation using analytical initial condi-
tions. A discontinuity (shock wave) can be observed. With x ∈ [0., 1.], t ∈ [0., 4.], ν → 0

To quantify the difference between a reconstruction and the ground truth, the training use an

a-posteriori approach with a mean-squared error based loss function Lmse(θ) with Thikonov regu-

larization, while the validation complement it with along with the relative difference error (RDE)

Lrde(θ) =
aθ − aref

aref
(5.8)
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5.5.2 Results: Application to advecting shock case

(a) ai(t) = Φ⊺
r û (b) ai(t) = Φ⊺

ru, Φr computed with temporal mean

Figure 5.11: Comparison of the true coefficients ai, the coefficients obtained from Galerkin pro-
jection (GPi) and determined with a pure NODE (NODEi), of the reduced POD basis associated

to the analytical solution to Burgers equation

Firstly, we reproduced the results obtained from Maulik and Gupta[MML+20, GL21] publications

to insure the feasibility of our experiments. We use the analytical solution previously introduced

as initial condition and compute the POD basis (we refer to the methodology chapter 4 for further

details) along with the coefficients of the reduced basis ai(t) obtained by subtracting the temporal

mean to the snapshots.

Figure 5.12: Convergence of the NODE training over 250 epochs (mean and standard deviation
over 5 training) using a-posteriori approach with mean square error metric

As seen in the figures 5.11 and 5.14, NODE can be efficiently used to determined model the true

coefficients from the reduced POD basis, more efficiently that through the Galerkin projection. As

evoked in the methodology chapter, the purpose of this idea come with the fact that u(t, x) ≈ ū(x)+

Φ⊺
r(x)a(t) can be approximated through POD basis and these coefficients. In the case where the

reduced basis Φr are obtained without subtracting the temporal mean, such as u(t, x) ≈ Φ⊺
r(x)a(t),

it makes it possible to determine a ROM urom(t, x) from a(0) = Φ(u(0, x)) with a computational

complexity drastically reduced (by the number of modes discarded).

However, we highlight multiple shortcomings in the results from the previous section. While Maulik

[MML+20] investigated the reconstruction, Gupta [GL21] main goals aimed at learning time-series
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Figure 5.13: Three first POD basis vectors (columns of Φ)

for long-range prediction. The experiments were performed on the single advecting shock such

that the reduced POD-basis clearly over-fit this case (See the Figure 5.13) and a generalisation to

a larger data-set was not covered. With this information in mind, having studied the methodology

behind POD-ROM and Galerkin projection, and finally, having analysed the capacity of NODEs

to learn the underlying dynamics of a model from large data-set in the previous sections; we make

the hypothesis that it is possible to extend this work to handle a larger range of values. This would

be considered as our next step to extend the research of this thesis.
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(a) At t = 1 with temporal mean subtracted (b) At t = 2 with temporal mean subtracted

(c) At t = 1 with temporal mean included in reduced
basis

(d) At t = 2 with temporal mean included in reduced
basis

Figure 5.14: Field reconstruction ability for NODE model on the advecting shock reference
solution to Burgers equation. Comparison with and without temporal mean subtracted (included

in POD-reduced basis)



Chapter 6

Conclusion and future work

6.1 Conclusion

In this thesis we assessed neural ordinary differential equation, a class of neural networks emerging

in the field of scientific computing, as an instance of data-driven reconstruction method used for

reduced order modeling.

In the chapter 3, the analysis of the simple example such as the Diffusion equation gave us insights

on the capacity of these neural networks to perform regression tasks accurately while reconstituting

the underlying physics of the full-order model. Indeed, using a single layer, enough to model the

diffusion equation, we observed that NODE would model an operator Fθ close to the true operator

F . From this knowledge, we inferred that the choice of a neural ordinary differential equation

architecture would benefit of evaluating the terms composing the differential equation.

This assumption was confirmed in the chapter 5 where a large range of neural network architectures

were evaluated on the non-linear Burgers equation. It was determined that neural networks such

as CNN were appropriate architectures to fully encompass the right-hand side of the evaluated

differential equations, given that the convolutional layer’s kernel local influence would help learn

derivatives (similarly to the finite difference method). On the other side, feed-forward neural

networks appear as a most accurate architecture to learn closure terms that model the effect of the

discarded ROM modes, that is to say model error or unresolved tendency. Next, using down-scaled

based reduced-order model, we have seen that the introduction of prior knowledge such as the time

continuity using optimise-then-discretize approach, the default behavior when using NODE; or the

mimicking of discrete models using a Forward Euler ODE solving method with a discretize-then-

optimise approach, would in every case offers results superior to the baseline coarse models. In

all logic, these results were further improved when using a closure model based on combination of

the baseline model with a neural network as a closure term. However, while being efficiency to

learn high-level dynamics, we also observed that these data-driven reconstruction methods were

not applicable to all problems nor able to learn all system dynamics such as high-frequencies or

discontinuities. For the Burgers equation, it was found that the second-order derivative term would

bring stability to the model in a similar way of additive noise for regularization, while its absence

would result in a complete inability of the model to approximate shocks.
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6.2 Future research

This thesis can be further extended in multiple directions. First of all, we come back to the last

assessments of this thesis. As seen with the POD-based reduced order modeling, NODE appears

as a hopeful solution to learn discarded modes. Experiments performed using a single advecting

shock initial condition proved that NODE models could be used to approximate the true time-

dependent coefficients a(t) and therefore to compute an approximation u(t) ≈ ū + Φa(t). The

latest goal of this thesis consisted into extending this experiment to a large data-set, to observe

if from a POD basis computed on a training data-set, it is possible to infer predict approximated

solution from unknown initial condition using a system whose complexity would be reduced by

the number of bases discarded. Next, we remind that all the experiments performed through

this thesis on data-driven reconstruction method were based on the usage of neural differential

equations, however other models could have been considered. More especially, we could consider

the physics-informed neural networks which, in complete contrast to NODE whose main objective

consists in approximating an operator Fθ, aim to predict a full trajectory rather than a single time

step. Eventually, we realise that the rising quantity of machine learning techniques and neural

network models provides a large range of possibilities to extends the field of reduced order model

techniques either to at least reduce the computational resources involved or increase the accuracy

of these models.



Appendix A

Eigenvalue decomposition based

proper orthogonal decomposition

Another approach to proper orthogonal decomposition (POD) makes usage of the eigenvalue de-

composition. While the SVD is suitable for non-square matrices and remain in a domain of real

values as long as the matrix decomposed U ∈ Rn×m; the eigenproblem method is only usable with

square matrices. Asymmetric real matrices might lead to complex eigenvalues and eigenvectors.

In the POD context, this make this approach less optimal for large data-set.

The first step consists in generating a snapshot matrix in the discrete domain, composed of a set

of snapshots of the normalised solution û(t, x) over time (ū are the averaged spacial values over

time).

S = [ũ1|ũ2|...|ũNt ] ∈ RNx×Nt (A.1)

ũi = ui − ū (A.2)

ū =
1

Nt

Nt∑
i=1

ui (A.3)

Next step consists in resolving an eigenvalue problem, in what is called the method of snapshots,

using a correlation matrix C = S⊺S

CW = ΛW (A.4)

Λ = λ1, ..., λNs ∈ RNt×Nt (A.5)

W ∈ RNt×Nt (A.6)

With Λ eigenvalues diagonal matrix and W eigenvector matrix. The POD basis matrix can simply

be obtained through the equation θ = SW ∈ RNx×Nt , which spans the space X t. However, as we

are looking for a reduced basis, we will select the first Nr columns of the POD basis matrix θ such

that Nr < Ns; the reduce basis Φ ∈ RNx×Nr obtained spans the new space Xr:

X r = span{Φ1...ΦNr} (A.7)
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Eventually we are able to obtain the POD ROM Ŝ from the reduce basis coefficients A (catching

the main features with regards to time)

A = Φ⊺S ∈ RNr×Nt (A.8)

Ŝ = [û1|...|ûNt ] ≈ ΦA ∈Nx×Nt (A.9)

Algorithm 4: Eigenproblem based Proper orthogonal decomposition

Require: U, k
1: S ← U −mean(U) ▷ Subtract temporal mean
2: C ← S⊺S ▷ Covariance matrix
3: λ, W ← eigen(C) ▷ Solve eigenvalue problem CW = ΛW
4: i← sort(|λ|) ▷ Sort by descending order
5: λ,W ← λ[i],W [:, i]
6: D ← Diagonal(1/

√
|λ|)

7: Φ← SWD ▷ POD basis
8: Û ← Φ[1 : k] Φ⊺[1 : k] ▷ Reduce model
9: return Φ, Û



Appendix B

Neural network architectures

B.1 Feedforward neural network

Feedforward neural network (FNN) are the most common architecture encountered in deep learning.

They consists into a network of neurons Fθ, a series of affine transformation followed by an element-

wise non-linear activation function.

zi(x) = Wix+ bi (B.1)

Fθ(x) = σL ◦ fL ◦ · ◦ σ1 ◦ f1(x) (B.2)

With Wi ∈ RHi×Hi−1 the weight matrix, bi ∈ RHi the bias vector, σi the activation function, Hi

number of neurons in layer i, L the total number of layers and θ = W1, b1, ·,WL, bL the neural

network set of parameters. Choice of activation function σ depends on the application for which

the FNN will be used; hyperbolic tangent or sigmoid would be suitable for case like neuralODE

which requires continuity, ReLU and Leaky ReLU would be suitable for application which might

face sparse gradient, inter alia.

Figure B.1: Example of fully connected feedforward neural network
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B.2 Convolutional neural network

Convolutional neural networks (CNN) are renowned for their capacity to consider local rather than

global properties of the data. Such architecture are of interest in scientific computing application,

where the kernels can mi-mick the relationship between discretized points (i.e. Central finite

difference). The convolutional layer can be defined as a feature map such that each entry of its

input is mapped to a local sample of the previous layer inputs, through a sliding convolutional

kernel and activation function. Let’s consider a 2-dimensional case with a feature map H, the
convolution operator can be represented as:

Hh
i,j,n = σh

 ∑
(k,l)∈N

∑
m∈C
Kk,l,m,nH

h−1
i+k,j+l,m + Bhi,j,n

 (B.3)

Where Hh
i,j,n is the feature map at current layer h for element at row i, column j and channel

n. Kk,l,m,n is the bank kernel with k, l the rows and columns offsets for each 2D kernel, m the

channel input from the preceding layer and n the kernel associated to the current layer channel n.

Hh−1
i+k,j+l,m is the feature map of the previous layer h− 1, where kernel offsets k, l are added to the

input i, j. Bhi,j,n and σh are respectively the bias term and activation function associated to this

current layer.
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